Cambridge International AS \& A Level

CANDIDATE NAME

CENTRE \square

CANDIDATE NUMBER

CHEMISTRY

9701/33
Paper 3 Advanced Practical Skills 1
October/November 2020
2 hours
You must answer on the question paper.
You will need: The materials and apparatus listed in the confidential instructions

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page,
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You may use a calculator.
- You should show all your working, use appropriate units and use an appropriate number of significant figures.
- Give details of the practical session and laboratory, where appropriate, in the boxes provided.

INFORMATION

- The total mark for this paper is 40 .
- The number of marks for each question or part question is shown in brackets [].
- The Periodic Table is printed in the question paper.
- Notes for use in qualitative analysis are provided in the question paper.

For Examiner's Use	
1	
2	
Total	

This document has 16 pages. Blank pages are indicated.

BLANK PAGE

Quantitative Analysis

Read through the whole method before starting any practical work. Where appropriate, prepare a table for your results in the space provided on page 4.

Show your working and appropriate significant figures in the final answer to each step of your calculations.
1 In acidic solutions iron(III) ions are reduced by iodide ions to form iron(II) ions. The iodide ions are oxidised to iodine.

$$
2 \mathrm{Fe}^{3+}(\mathrm{aq})+2 \mathrm{I}^{-}(\mathrm{aq}) \rightarrow 2 \mathrm{Fe}^{2+}(\mathrm{aq})+\mathrm{I}_{2}(\mathrm{aq})
$$

The rate of this reaction can be investigated by using starch indicator, which turns blue-black in the presence of iodine. Sodium thiosulfate is added to the reaction mixture to react with iodine as it is formed. The blue-black colour is seen when all the thiosulfate has reacted.

$$
\mathrm{I}_{2}(\mathrm{aq})+2 \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-}(\mathrm{aq}) \rightarrow 2 \mathrm{I}^{-}(\mathrm{aq})+\mathrm{S}_{4} \mathrm{O}_{6}{ }^{2-}(\mathrm{aq})
$$

You will investigate how the rate of reaction is affected by changing the concentration of the iodide ions.

FA 1 is $0.0500 \mathrm{~mol} \mathrm{dm}^{-3}$ potassium iodide, KI.
FA 2 is $0.0500 \mathrm{~mol} \mathrm{dm}^{-3}$ acidified iron(III) chloride, FeCl_{3}.
FA 3 is 0.00500 moldm ${ }^{-3}$ sodium thiosulfate, $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$.
FA 4 is starch indicator.

(a) Method

Prepare a table on page 4 for your results. You will need to include the volume of FA 1, volume of water, reaction time and rate of reaction for each of five experiments.

Experiment 1

- Fill the burette labelled FA 1 with FA 1.
- Run $20.00 \mathrm{~cm}^{3}$ of FA 1 into the $100 \mathrm{~cm}^{3}$ beaker.
- Use the $50 \mathrm{~cm}^{3}$ measuring cylinder to add the following to the same $100 \mathrm{~cm}^{3}$ beaker: - $20.0 \mathrm{~cm}^{3}$ of FA 3 - $10.0 \mathrm{~cm}^{3}$ of FA 4 .
- Use the $25 \mathrm{~cm}^{3}$ measuring cylinder to measure $10.0 \mathrm{~cm}^{3}$ of FA 2.
- Add this FA 2 into the same $100 \mathrm{~cm}^{3}$ beaker and start timing immediately.
- Stir once and place the beaker on the white tile.
- Stop timing as soon as the solution turns blue-black.
- Record this reaction time to the nearest second.
- Wash out the beaker and dry it with a paper towel.

Experiment 2

- Fill the second burette with distilled water.
- Run $10.00 \mathrm{~cm}^{3}$ of FA 1 into the $100 \mathrm{~cm}^{3}$ beaker.
- Run $10.00 \mathrm{~cm}^{3}$ of distilled water into the beaker containing FA 1.
- Use the $50 \mathrm{~cm}^{3}$ measuring cylinder to add the following to the same $100 \mathrm{~cm}^{3}$ beaker:

$-\quad 20.0 \mathrm{~cm}^{3}$ of FA 3	
\circ	$10.0 \mathrm{~cm}^{3}$ of FA 4.

- Use the $25 \mathrm{~cm}^{3}$ measuring cylinder to measure $10.0 \mathrm{~cm}^{3}$ of FA 2.
- Add the FA 2 to the same $100 \mathrm{~cm}^{3}$ beaker and start timing immediately.
- Stir once and place the beaker on the white tile.
- Stop timing as soon as the solution turns blue-black.
- Record this reaction time to the nearest second.
- Wash out the beaker and dry it with a paper towel.

Experiments 3-5

- Carry out three further experiments to investigate how the reaction time changes with different volumes of potassium iodide, FA 1.
The combined volume of FA 1 and distilled water must always be $20.00 \mathrm{~cm}^{3}$.
Do not use a volume of FA 1 that is less than $6.00 \mathrm{~cm}^{3}$.

Results

The rate of reaction can be calculated as shown:

$$
\text { rate }=\frac{1000}{\text { reaction time }}
$$

I	
II	
III	
IV	
V	
VI	
VII	
VIII	
IX	
X	

[10]
(b) On the grid opposite, plot a graph of rate of reaction (y-axis) against volume of FA 1 (x-axis). Include the origin, $(0,0)$, in your scales. Circle any points you consider anomalous and draw a line of best fit.

(c) Use your graph to calculate the time that the reaction would have taken if $5.00 \mathrm{~cm}^{3}$ of FA 1 had been used. Show on the graph how you obtained your answer.
(d) (i) Using data from Experiments 1 and 2, show by calculation that the volume of aqueous potassium iodide, FA 1, used was directly proportional to the concentration of iodide ions.
(ii) Explain, by referring to your graph or your table of results, how the rate of reaction is affected by an increase in the concentration of aqueous potassium iodide, FA 1.
\qquad
\qquad
\qquad
\qquad
(e) Thiosulfate ions can reduce iron(III) ions and also react with acid to form sulfur, sulfur dioxide and water.
(i) Write an ionic equation for the reaction between thiosulfate ions and hydrogen ions in aqueous solution. Include state symbols.
\qquad
(ii) A student carries out the same investigation as in (a) but the solutions are mixed in a different order. The student places FA 1 and an appropriate volume of distilled water in one beaker and all the other reactants in a second beaker. The student then transfers the mixture from the second beaker to the first and starts timing.

Tick the box for the statement you consider correct. Explain your answer.

The student's method is better than that in (a).	\square
The two methods are equally good.	\square
The student's method is not as good as that in (a).	
	\square

\qquad
\qquad
(f) Another student investigates the effect of iron(III) concentration on the rate of this reaction. The student carries out another experiment, Experiment 6, and the rate is compared to that of Experiment 2. In Experiment 2, the volumes used were:

reagent	volume $/ \mathrm{cm}^{3}$
FA 1	10.00
FA 2	10.0
FA 3	20.0
FA 4	10.0
distilled water	10.00

(i) Suggest the volumes the student could use for Experiment 6.

reagent	volume $/ \mathrm{cm}^{3}$
FA 1	
FA 2	
FA 3	
FA 4	
distilled water	

(ii) This student records a time of 178 s for Experiment 2.

The rate of reaction is directly proportional to the concentration of iron(III) ions.
Suggest how long it would take the reaction mixture proposed for Experiment 6 in (f)(i) to turn blue-black. Assume that Experiment 6 is carried out at the same temperature as Experiment 2.
Do not carry out Experiment 6.

$$
\text { time }=
$$

[Total: 24]

Qualitative Analysis

Where reagents are selected for use in a test, the name or correct formula of the element or compound must be given.

At each stage of any test you are to record details of the following:

- colour changes seen
- the formation of any precipitate and its solubility in an excess of the reagent added
- the formation of any gas and its identification by a suitable test.

You should indicate clearly at what stage in a test a change occurs.
If any solution is warmed, a boiling tube must be used.
Rinse and reuse test-tubes and boiling tubes where possible.

No additional tests for ions present should be attempted.

2 (a) FA 5 is a salt consisting of two ions both of which are listed in the Qualitative Analysis Notes.
(i) Place a small spatula measure of FA 5 into a hard-glass test-tube. Heat the tube gently at first and then more strongly. Record all your observations.
\qquad
\qquad
\qquad
\qquad
(ii) FA 6 is a sample of the residue obtained from FA 5 after strong heating.

Place a small spatula measure of FA 6 in a test-tube and add a 1 cm depth of aqueous hydrogen peroxide. Record your observations.
\qquad
\qquad
(iii) Dissolve a spatula measure of FA 5 in a 5 cm depth of distilled water in a boiling tube. Use separate 1 cm depths of this solution in test-tubes for the following tests. Record your observations.

Keep the remainder of FA 5(aq) for use in 2(b)(ii).

test	observations
Test 1 Add aqueous sodium hydroxide.	
Test 2 Add a 1 cm depth of aqueous hydrogen peroxide, then	
add aqueous sodium hydroxide.	

(b) (i) FA 7 is a solution of a different salt. The cation present in FA 7 is not listed in the Qualitative Analysis Notes.

FA 5(aq) and FA 7 each contain either a halide ion or an anion containing sulfur. These anions are listed in the Qualitative Analysis Notes.

For both of these anions, select reagents that you would use in order to carry out tests that give positive results.

Record the reagents and the ions for which they would test.
(ii) Carry out both of your tests on FA 5(aq) and FA 7 and record your results in the space below.
(iii) Use your observations in (a) and (b)(ii) to identify the ions present in FA 5 and FA 7. Write the formula of each ion in the table. If the tests you carry out do not allow you to identify any of the ions, write 'unknown'.

	FA 5	FA 7
cation		
anion		

(iv) Suggest what you would observe if you added aqueous chlorine to separate portions of aqueous solutions of FA 5 and FA 7.

Do not carry out this test.
aqueous chlorine and FA 5(aq) \qquad
aqueous chlorine and FA 7(aq)
[Total: 16]

BLANK PAGE

BLANK PAGE

BLANK PAGE

Qualitative Analysis Notes

1 Reactions of aqueous cations

ion	reaction with	
	$\mathrm{NaOH}(\mathrm{aq})$	$\mathrm{NH}_{3}(\mathrm{aq})$
aluminium, $\mathrm{Al}{ }^{3+}(\mathrm{aq})$	white ppt. soluble in excess	white ppt. insoluble in excess
ammonium, $\mathrm{NH}_{4}^{+}(\mathrm{aq})$	no ppt. ammonia produced on heating	-
barium, $\mathrm{Ba}^{2+}(\mathrm{aq})$	faint white ppt. is nearly always observed unless reagents are pure	no ppt.
calcium, $\mathrm{Ca}^{2+}(\mathrm{aq})$	white ppt. with high [$\left.\mathrm{Ca}^{2+}(\mathrm{aq})\right]$	no ppt.
$\begin{aligned} & \text { chromium(III), } \\ & \mathrm{Cr}^{3+}(\mathrm{aq}) \end{aligned}$	grey-green ppt. soluble in excess	grey-green ppt. insoluble in excess
$\begin{aligned} & \text { copper(II), } \\ & \mathrm{Cu}^{2+}(\mathrm{aq}) \end{aligned}$	pale blue ppt. insoluble in excess	blue ppt. soluble in excess giving dark blue solution
iron(II), $\mathrm{Fe}^{2+}(\mathrm{aq})$	green ppt. turning brown on contact with air insoluble in excess	green ppt. turning brown on contact with air insoluble in excess
iron(III), $\mathrm{Fe}^{3+}(\mathrm{aq})$	red-brown ppt. insoluble in excess	red-brown ppt. insoluble in excess
magnesium, $\mathrm{Mg}^{2+}(\mathrm{aq})$	white ppt. insoluble in excess	white ppt. insoluble in excess
$\begin{aligned} & \text { manganese(II), } \\ & \mathrm{Mn}^{2+}(\mathrm{aq}) \end{aligned}$	off-white ppt. rapidly turning brown on contact with air insoluble in excess	off-white ppt. rapidly turning brown on contact with air insoluble in excess
$\begin{aligned} & \text { zinc, } \\ & \mathrm{Zn}^{2+}(\mathrm{aq}) \end{aligned}$	white ppt. soluble in excess	white ppt. soluble in excess

2 Reactions of anions

ion	reaction
carbonate, $\mathrm{CO}_{3}{ }^{2-}$	CO_{2} liberated by dilute acids
chloride, $\mathrm{Cl}{ }^{-}(\mathrm{aq})$	gives white ppt. with $\mathrm{Ag}^{+}(\mathrm{aq})$ (soluble in $\mathrm{NH}_{3}(\mathrm{aq})$)
bromide, $\mathrm{Br}^{-}(\mathrm{aq})$	gives cream ppt. with $\mathrm{Ag}^{+}(\mathrm{aq})$ (partially soluble in $\mathrm{NH}_{3}(\mathrm{aq})$)
iodide, $\mathrm{I}^{-(\mathrm{aq})}$	gives yellow ppt. with $\mathrm{Ag}^{+}(\mathrm{aq})$ (insoluble in $\mathrm{NH}_{3}(\mathrm{aq})$)
nitrate, $\mathrm{NO}_{3}^{-}(\mathrm{aq})$	NH_{3} liberated on heating with $\mathrm{OH}^{-}(\mathrm{aq})$ and Al foil
nitrite, $\mathrm{NO}_{2}^{-}(\mathrm{aq})$	NH_{3} liberated on heating with $\mathrm{OH}^{-}(\mathrm{aq})$ and Al foil
sulfate, $\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})$	gives white ppt. with $\mathrm{Ba}^{2+}(\mathrm{aq})$ (insoluble in excess dilute strong acids)
sulfite, $\mathrm{SO}_{3}^{2-}(\mathrm{aq})$	gives white ppt. with $\mathrm{Ba}^{2+}(\mathrm{aq})$ (soluble in excess dilute strong acids)

3 Tests for gases

gas	test and test result
ammonia, NH_{3}	turns damp red litmus paper blue
carbon dioxide, CO_{2}	gives a white ppt. with limewater (ppt. dissolves with excess CO_{2})
chlorine, Cl_{2}	bleaches damp litmus paper
hydrogen, H_{2}	'pops' with a lighted splint
oxygen, O_{2}	relights a glowing splint

	$\stackrel{\square}{\circ}$
	은 튼
	\％
	®U镸
	毋 ¢ ¢ 高
	I
$\bar{\circ} \mathrm{E} \text { ¢ }$	® 은 言
\＆	๙ つ
	बの
	ヵ ᄃ

To avoid the issue of disclosure of answer－related information to candidates，all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet．This is produced for each series of examinations and is freely available to download at www．cambridgeinternational．org after the live examination series．

